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A simple and efficient localized artificial diffusivity scheme is developed for the purpose of
capturing discontinuities on curvilinear and anisotropic meshes using a high-order com-
pact differencing scheme. The artificial diffusivity is dynamically localized in space to cap-
ture different types of discontinuities such as a shock wave, contact surface or material
discontinuity. The method is intended for use with large-eddy simulation of compressible
transitional and turbulent flows. The method captures the discontinuities on curvilinear
and anisotropic meshes with minimum impact on the smooth flow regions. The amplitude
of wiggles near a discontinuity and the number of grid points used to capture the discon-
tinuity do not depend on the mesh size. The comparisons between the proposed method
and high-order shock-capturing schemes illustrate the advantage of the method for the
simulation of flows involving shocks, turbulence and their interactions. The multi-dimen-
sional formulation is tested on a variety of 1D and 2D, steady and unsteady, different types
of discontinuity-related problems on curvilinear and anisotropic meshes. A simplification
of the method which reduces the computational cost does not show any major detrimental
effect on the discontinuity capturing under the conditions examined.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Due to advances in computational power and numerical algorithms, the application of large-eddy simulation (LES) to
transitional and turbulent compressible flows is the focus of significant recent research. The engineering motivation for com-
pressible LES is to provide a more realistic turbulent flowfields than Reynolds-averaged Navier–Stokes simulations and to
educidate the unsteady phenomena such as mixing, combustion, heat-transfer, sound-generation and unsteady loads which
may be of interest.

Because of their spectral-like resolution, high-order compact differencing schemes [1] are an attractive choice for LES of
transitional and turbulent flows to reduce dispersion, anisotropy and dissipation errors associated with the spatial discret-
ization. High-order compact differencing schemes have been applied to practical applications [2–4], and they all have shown
the capability of the algorithm. However, these central differencing schemes cannot be applied directly to flows that contain
discontinuities. When flows contain steep gradients, such as shock waves, contact surfaces or material discontinuity, non-
physical spurious oscillations that make the simulation unstable are generated. The development of numerical algorithms
. All rights reserved.
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that capture discontinuities and also resolve the scales of turbulence in compressible turbulent flows remains a significant
challenge.

Several techniques to extend compact schemes to discontinuous flows have been proposed. Lee et al. [5] proposed a hy-
brid approach to capture discontinuities. In regions of strong shock waves, the compact differencing of convective fluxes is
replaced locally by the essentially non-oscillatory (ENO) scheme [6]. Similarly, Rizzetta et al. [7] introduce hybridization of
the compact differencing scheme with Roe’s upwind-biased scheme [8]. Visbal and Gaitonde [9] developed an adaptive filter
method in which the compact scheme is coupled with a locally reduced-order filter to capture discontinuities. Both ap-
proaches require a detector to identify the smooth and non-smooth regions in the flow. The choice of an effective disconti-
nuity detector remains a bottleneck for these methods when applied to complex applications. Additionally, hybrid schemes,
such as a hybrid of an accurate linear scheme and a robust non-linear shock-capturing scheme, can possibly cause numerical
instabilities when multiple discontinuities are closely located (the grid points separating them are very few).

An attractive alternative to these methods has been proposed by Cook and Cabot [10,11], Fiorina and Lele [12] and Cook
[13] by dynamically adding localized high-wavenumber biased artificial diffusivity where needed, to capture discontinuities
using high-order compact differencing schemes. The main feature of the artificial diffusivity is to suppress the unresolved
high frequency content of the flowfield on a given mesh to capture the discontinuity with minimal effects by smearing
the discontinuity over a numerically resolvable scale. Also, in the limit of grid spacing D ? 0, the artificial diffusivity van-
ishes and the governing equations converge to the original Navier–Stokes equations. Main advantages of the method are
its simplicity, low computational cost, automatic deactivation in smooth regions (high-resolution characteristics of a
high-order compact scheme is preserved in smooth regions), easy to implement in an existing code, design to provide
high-wavenumber biased damping, and the lack of a discontinuity detector or weighting/hybrid scheme. All these advanta-
ges are desirable for compressible LES of the flows involving shock, contact, and material discontinuities, turbulence and
their interactions. In the previous work the method was shown to work well on 1D and 2D shock-related problems. However,
most of the test cases in the previous works used uniformly spaced Cartesian coordinate systems. Therefore, the extension of
the method to curvilinear and anisotropic meshes is still an open issue. This extension is necessary for the method to be use-
ful for practical applications.

The objective of this paper is to establish the methodology for capturing discontinuities in a curvilinear coordinate frame-
work using a high-order compact scheme. Simple and efficient localized high-wavenumber biased artificial diffusivity
scheme on curvilinear and anisotropic meshes is proposed. The original formulation is also simplified to reduce the
computational costs while achieving better representation of high-order derivatives. The performance of the method
will be assessed on a 2D smooth/non-smooth flows and several 1D and 2D, steady and unsteady, different types of
discontinuity-related problems.

2. Mathematical models

2.1. Governing equations

The compressible Navier–Stokes equations for an ideal non-reactive gas are:
oq
ot
þr � ðquÞ ¼ 0; ð1Þ

oqu
ot
þr � ðquuþ pd� sÞ ¼ 0; ð2Þ

oE
ot
þr � ½Euþ ðpd� sÞ � u� jrT� ¼ 0; ð3Þ

oqYk

ot
þr � ðquYkÞ � r � ðqDkrYkÞ ¼ 0; ð4Þ

E ¼ p
c� 1

þ 1
2
qu � u; p ¼ qRT; ð5Þ
where q is the density, u is the velocity vector, p is the static pressure, E is the total energy, T is the temperature, c (=1.4:air)
is the ratio of specific heats, R is the gas constant, j is the thermal conductivity, d is the unit tensor. Eq. (4) is the transport
equation for a mass fraction Yk where Dk is the species diffusion coefficient. The viscous stress tensor s is
s ¼ lð2SÞ þ b� 2
3
l

� �
ðr � uÞd; ð6Þ
where l is the dynamic (shear) viscosity, b is the bulk viscosity, and S is the strain rate tensor, S ¼ 1
2 ðruþ ðruÞTÞ.

2.2. Localized artificial diffusivity

When a high-order compact scheme is applied to solve flows that involve steep gradients such as those due to shock
waves, contact surfaces or material discontinuity, non-physical spurious oscillations that make the simulation unstable
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are generated. A key issue here is how to properly remove the non-physical spurious oscillations without damping the re-
solved scales of turbulence.

Cook [13] introduced a high-wavenumber biased artificial diffusivity to suppress the unresolved high frequency content
of the flowfield to capture the discontinuity by smearing the discontinuity over a numerically resolvable scale. The method is
based on adding grid-dependent artificial fluid transport coefficients to the coefficients appearing in Eqs. (3), (4) and (6),
l ¼ lf þ l�; ð7Þ
b ¼ bf þ b�; ð8Þ
j ¼ jf þ j�; ð9Þ
Dk ¼ Df ;k þ D�k; ð10Þ
where the f subscripts and asterisks denote fluid and artificial transport coefficients. The artificial fluid transport coefficients
are designed to vanish in smooth well-resolved regions and provide damping in non-smooth unresolved regions to capture
different types of discontinuity. The artificial diffusivity is modeled by [13]
l� ¼ ClqjrrSjDrþ2; ð11Þ
b� ¼ CbqjrrSjDrþ2; ð12Þ

j� ¼ Cj
qcs

T
jrrejDrþ1; ð13Þ

D�k ¼ CDjrrYkj
Drþ2

Dt
þ CY ½Yk � 1�HðYk � 1Þ � Yk½1� HðYkÞ�

D2

Dt
; ð14Þ
where Cl, Cb, Cj, CD and CY are user-specified constants, D is local grid spacing, S is the magnitude of the strain rate tensor, cs

is sound speed, e is internal energy defined by e ¼ 1
c�1

p
q, and H is the Heaviside function. If r is sufficiently high, the high-

wavenumber biased (kr) artificial diffusivity only damps wavenumbers close to the unresolved wavenumbers. The overbar
denotes an approximate truncated-Gaussian filter [10].

Typically, in the method, D is defined as the geometrically averaged local grid spacing (cube-root of cell volume), and a
value of r = 4 is chosen and r4f is decomposed to a series of Laplacians, r4f =r2(r2f). The typical values for the user-spec-
ified constants with r = 4 are Cl = 0.002, Cb = 1, Cj = 0.01, CD = 0.003 and CY = 100 [13].

Fiorina and Lele [12] introduced the density diffusivity to capture a contact discontinuity instead of using j* by adding an
additional artificial diffusive term in the continuity of mass equation. However, it is more natural to add j* to capture a tem-
perature discontinuity than adding an additional diffusion term to the continuity equation. Also, from a physical viewpoint,
density does not diffuse. Therefore, the discontinuity capturing scheme for curvilinear and anisotropic meshes proposed in
this paper is essentially based on the original 1D formulation proposed by Cook [13].

2.3. Reformulation for curvilinear and anisotropic meshes

The original properties of the 1D formulation of artificial diffusivity of Cook [13] that capture discontinuities with min-
imal effects on vorticity should be preserved when the method is reformulated for multi-dimensional curvilinear and aniso-
tropic meshes.

In order to extend the original method to a multi-dimensional curvilinear coordinate system, the D scaling appearing in
Eqs. (11)–(14) has to be generalized. The use of geometrically averaged grid spacing as proposed in the original paper [13] is
one choice that worked well on an isotropic grid. However, the geometrically averaged grid spacing introduces an undesir-
able mesh dependence when an anisotropic mesh is used. As a simple example, consider the problem of capturing a steady
shock wave in 1D flow on a grid spacing defined by D = Dx, for which the 1D formulation of artificial shear viscosity will be
l�1D ¼ Clq
orS
oxr

����
����Dxrþ2: ð15Þ
When the same 1D shock is considered on a 2D domain, the artificial shear viscosity using the geometrically averaged grid
spacing will be
l�2D ¼ ClqjrrSjðDxDyÞ
rþ2

2 ¼ l�1D �
Dy
Dx

� �rþ2
2

: ð16Þ
If an isotropic grid is used (Dx = Dy), l�1D ¼ l�2D and the artificial diffusion terms behave consistently with the original 1D
formulation. However, when an anisotropic grid (Dx 6¼ Dy) is used, l�1D 6¼ l�2D and more or less than the necessary diffusion
will be introduced. This might cause significant numerical damping of resolved scales of turbulence due to the excessive dis-
sipation or spurious non-physical oscillations across the steep gradients.

To construct a consistent multi-dimensional artificial diffusivity, each term in |rrS|Dr+2 needs to be grid-dependent for all
possible discontinuity directions. That is, each derivative in rrS should be scaled by the grid spacing in the derivative direc-
tion to avoid the undesirable effects from the grid spacing in other directions. The Gaussian filter removes the cusps intro-
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duced by the high-order derivative operators used to compute the artificial diffusivity. Therefore, the grid spacing depen-
dence should be located in the operand of the Gaussian filter. As discussed, in the original methods, the rrf appearing in
Eqs. (11)–(14) is computed by a series of Laplacians and evaluated using a high-order compact differencing scheme. The
evaluation of the series of Laplacians induces significant computational cost. Furthermore, considering a multi-dimensional
generalized coordinate extension of a series of Laplacians, the full implementation of the Laplacians induces further compu-
tational cost in evaluating the additional cross-derivative terms. To reduce the computational costs and achieve better rep-
resentation of the high derivatives for practical use, an alternative simplification is the direct evaluation of

P3
j¼1

or f
oxr

j
instead of

a series of Laplacians. Hence we evaluate the localized artificial diffusivity on a multi-dimensional generalized coordinate
system defined by
l� ¼ Clq
X3

l¼1

X3

m¼1

onl

oxm

� �2
" #r=2

orS
onr

l

Drþ2
l

������
������; ð17Þ

b� ¼ Cbq
X3

l¼1

X3

m¼1

onl

oxm

� �2
" #r=2

orS
onr

l

Drþ2
l

������
������; ð18Þ

j� ¼ Cj
qcs

T

X3

l¼1

X3

m¼1

onl

oxm

� �2
" #r=2

ore
onr

l

Drþ1
l

������
������; ð19Þ

D�k ¼ CDcs

X3

l¼1

X3

m¼1

onl

oxm

� �2
" #r=2

orYk

onr
l

Drþ1
l

������
������þ CY cs½Yk � 1�HðYk � 1Þ � Yk½1� HðYkÞ�DYk

; ð20Þ
where nl refers to generalized coordinates n, g and f and xm refers to x, y and z when l and m are 1, 2 and 3, respectively. Dl is
the grid spacing in the physical space along the grid line in the nl direction and is defined by D2

l ¼
P3

n¼1
xn;iþ1�xn;i�1

2

� �2
, where xn,i

refers to xi, yi and zi when n is 1, 2 and 3 and i is a node index in the nl direction. DYk
in Eq. (20) is the grid spacing in the

physical space defined by
DYk
¼

P3
l¼1

or Yk
onr

l

��� ���DlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
l¼1

or Yk
onr

l

� 	2
r

þ e

; ð21Þ
where e is the small constant (e.g. e = 10�16) to prevent division by zero. Note that the proposed D�k model is different from
the original model of Cook [13] as shown in Eq. (14). The original model for D�k has a dependence on the time-step size and
introduces higher artificial diffusivity when the time-step size is reduced. Thus, for solution at a fixed physical time, different
thickness of material interface are obtained for different time-steps with a same grid and flow. Also, note that due to com-
putational cost, all cross-derivative terms are neglected in Eqs. (17)–(20). This formulation does not make the artificial dif-
fusivity perfectly consistent with the original 1D formulation when multi-dimensional flows are considered because the
same value of the artificial diffusion coefficient is applied in every direction. This could potentially have a significant detri-
mental effect. However, the performance of the overall scheme examined here with test cases for 2D discontinuity-related
problems on Cartesian and curvilinear meshes show that this assumption does not have any significant detrimental effect. In
the limit of Dl ? 0, Eqs. (17)–(20) ? 0. Therefore, the governing equations converge to the original Navier–Stokes equations.

In the present study, r = 4 is adopted in Eqs. (17)–(20). The fourth derivatives, o4S
on4

l
, o4e

on4
l

and o4Yk

on4
l

are evaluated by [1]
a
o4fi�1

on4
l

þ o4fi

on4
l

þ a
o4fiþ1

on4
l

¼ b
fiþ3 � 9f iþ1 þ 16f i � 9f i�1 þ fi�3

6Dn4
l

þ a
fiþ2 � 4f iþ1 þ 6f i � 4f i�1 þ fi�2

Dn4
l

: ð22Þ
Sixth- and fourth-order tridiagonal schemes and a fourth-order explicit scheme at interior points are obtained by setting the
parameters as: sixth-order tridiagonal, a ¼ 7

26, a ¼ 19
13 and b ¼ 1

13 (C6); fourth-order tridiagonal, a ¼ 1
4, a ¼ 3

2 and b = 0 (C4);
fourth-order explicit, a = 0, a = 2 and b = �1 (E4). Dnl is the spatial grid size. These schemes are used in the present
assessments.

At a near boundary point i, one-sided explicit formulas are utilized:
f
0000

i ¼
1

h4

X8

n¼1

an;ifn; i 2 1;2 ð23Þ

f
0000

i ¼
1

h4

X7

n¼0

aimax�n;ifimax�n; i 2 ðimax� 1; imaxÞ: ð24Þ
Second-order boundary schemes are used in the present study. Coefficients for the second-order boundary schemes at each
left, near boundary point, 1 and 2 are ða1;1; a2;1; a3;1; a4;1; a5;1; a6;1; truncation errorÞ ¼ 3;�14;26;�24;11;�2; 17

6 h2f ð6Þ
� 	

and

ða1;2; a2;2; a3;2; a4;2; a5;2; a6;2; truncation errorÞ ¼ 2;�9;16;�14;6;�1; 5
6 h2f ð6Þ

� 	
. The right boundary formulas are obtained by
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setting aimax�n,i = an+1,imax�i+1 for i 2 (imax � 1, imax). With regard to the C6 and E4, a second-order central scheme is used for
point 3 and imax � 2. The user-specified constants are set to Cl = 0.002, Cb = 1, Cj = 0.01, CD = 0.01 and CY = 100. The effects of
the constants CD and CY for the newly proposed D�k are assessed in Section 3.1.4. These constants allows the scheme to cap-
ture discontinuities and not to introduce excessive dissipation for all the cases examined in this paper. Although the con-
stants work well for wide range of test cases when r = 4 in Eqs. (17)–(20) and sixth-order compact/eighth-order filtering
schemes are used, the constants will possibly need to be adjusted if different value of r or other numerical schemes are
adopted.

The approximate truncated-Gaussian filter of Cook and Cabot [10] is applied to interior points sequentially along each
grid line for the overbar in Eqs. (17)–(20):
fi ¼
3565

10;368
fi þ

3091
12;960

ðfi�1 þ fiþ1Þ þ
1997

25;920
ðfi�2 þ fiþ2Þ þ

149
12;960

ðfi�3 þ fiþ3Þ þ
107

103;680
ðfi�4 þ fiþ4Þ: ð25Þ
At the near boundary points, 1, . . .,4 and imax � 3, . . ., imax, for a non-periodic boundary such as a reflecting wall condition,
the value fi is mirrored across the boundary to apply Eq. (25).

2.4. Numerical scheme

The equations are solved in generalized curvilinear coordinates, where spatial derivatives for convective terms, viscous
terms, metrics and Jacobian are evaluated by the sixth-order compact differencing scheme [1]. For any scalar quantity f,
the finite difference approximation to the first and second spatial derivatives at node i, ofi

onl
and o2fi

on2
l

are obtained by the follow-
ing formulas:
a1
ofi�1

onl
þ ofi

onl
þ a1

ofiþ1

onl
¼ a1

fiþ1 � fi�1

2Dnl
þ b1

fiþ2 � fi�2

4Dnl
ð26Þ

a2
o2fi�1

on2
l

þ o2fi

on2
l

þ a2
o2fiþ1

on2
l

¼ a2
fiþ1 � 2f i þ fi�1

Dn2
l

þ b2
fiþ2 � 2f i þ fi�2

4Dn2
l

ð27Þ
where a1 = 1/3, a1 = 14/9 and b1 = 1/9 and a2 = 2/11, a2 = 12/11 and b2 = 3/11 for the sixth-order schemes. Instead of applying
the first derivative twice, the second derivative scheme is used for the viscous flux vectors reformulated in the non-conser-
vative form and the original double Laplacians formulation of localized artificial diffusivity scheme. A fourth-order Runge–
Kutta method is used for temporal integration.

The following eighth (2Nth)-order low-pass spatial filtering scheme [1] is used on the conservative properties once in
each direction after each final Runge–Kutta step in order to ensure numerical stability:
af
�f i�1 þ �f i þ af

�f iþ1 ¼
XN

n¼0

an

2
ðfiþn þ fi�nÞ; ð28Þ
where f is the solution vector, and �f is filtered quantity. A eighth-order filter is obtained with a0 ¼ 93þ70af
128 ; a1 ¼ 7þ18af

16 ;

a2 ¼ �7þ14af
32 ; a3 ¼ 1�2af

16 ; a4 ¼ �1þ2af
128 . The af is a free parameter satisfying the inequality �0.5 < af 6 0.5. In this range, as af

is increased, a less suppression is realized. In the present study, the af is fixed to 0.495 for all the cases examined in this pa-
per. High-order one-sided formulas are used for the near boundary points at 1, . . .,4 and correspondingly at im-
ax � 3, . . ., imax [14]. Detailed spectral responses of these filters may be found in Ref. [15].

3. Numerical results

The numerical results with the original double Laplacians formulations of localized artificial diffusivity that are evaluated
by using sixth-order compact differencing scheme are denoted LAD-C6 where the D scaling in Eqs. (11)–(14) is evaluated by
the geometrically averaged grid spacing. The results from using the localized artificial diffusivity schemes for multi-dimen-
sional generalized coordinate system (Eqs. (17)–(20)) are denoted LADG-C6, LADG-C4 and LADG-E4 where the last two char-
acters such as C6, C4 and E4 denote the schemes used to evaluate the fourth derivatives in the equations: C6, sixth-order
tridiagonal scheme; C4, fourth-order tridiagonal scheme; E4, fourth-order explicit scheme.

3.1. Performance of localized artificial diffusivity scheme in generalized form

Firstly, the performances of the localized artificial diffusivity scheme in generalized forms for smooth and non-smooth
flows are evaluated through the simple problems of 2D vortex advection, stationary shock wave, contact discontinuity
and material interface on isotropic and wavy meshes.

3.1.1. Two-dimensional vortex advection
The first test case is an inviscid convecting vortex in a uniform flow on isotropic Cartesian and wavy meshes introduced

by Visbal and Gaitonde [2]. Since vortex preservation is sensitive to the numerical dissipation, this problem can be used to
assess the impact of the generalized formulations of localized artificial diffusivity on the smooth flow.
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The initial velocity and pressure field of the zero net circulation vortex is given by the following relations [16]:
Fig. 1.
0.036.
u ¼ U1 �
Cðy� ycÞ

R2
c

exp
�r2

2
; ð29Þ

v ¼ Cðx� xcÞ
R2

c

exp
�r2

2
; ð30Þ

p ¼ p1 �
qC2

2R2
c

expð�r2Þ; ð31Þ
where u and v are the x and y velocity components, p is the static pressure, Rc is the vortex core radius and r2 is defined as
r2 ¼ ðx� xcÞ2 þ ðy� ycÞ
2

R2
c

: ð32Þ
The uniform freestream Mach number, the non-dimensional vortex strength and center of the vortex are: M1 = 0.1, C/
(U1Rc) = 0.02 and xc = yc = 0. The density is assumed constant.

3.1.1.1. On uniform Cartesian meshes. Seven different levels of grid spacing Dx/Rc = Dy/Rc = 1.5, 1.0, 0.8, 0.6, 0.4, 0.3 and 0.2 are
employed for the uniform Cartesian meshes. The wide range of grid resolution allows to investigate the error introduce by
localized artificial diffusivity on the resolved and unresolved smooth flows. The computational domain is �6 6 x/Rc 6 18
and �6 6 y/Rc 6 6. Fig. 1 shows the computational grid (Dx/Rc = Dy/Rc = 0.4) and the initial vorticity contours. The computa-
tional time-step size is set to DtU1/Rc = 0.002 that corresponds to a Courant–Friedrichs–Lewy (CFL) number of 0.01 on the
finest mesh. The results are discussed at times of tU1/Rc = 8 and 80 where the vortex convects distances of 8Rc and 80Rc. Peri-
odic boundary conditions are applied on the boundaries in the x- and y-direction. For the 80Rc advection case, the vortex
passes through the periodic boundary in the x-direction three times and reaches x/Rc = 8 at the instant of tU1/Rc = 80.

Fig. 2 shows the comparison between the exact solution and the numerical simulations (without LADG, LADG-C6, -C4 and
-E4) for the non-dimensionalized v-velocity v/U1 profiles along a horizontal centerline that passes through the vortex center.
The results are obtained at time of tU1/Rc = 80 on the Cartesian mesh with Dx/Rc = Dy/Rc = 0.3. All the results are nearly iden-
tical and in excellent agreement with the exact solution. The normalized L1-error norm in the v-velocity profile in terms of
grid spacing is shown in Fig. 3. An estimation of the order of accuracy is also included in the figure (in parentheses) by using
linear least-square fits to the data at Dx/Rc = 0.4, 0.3 and 0.2 obtained by the LADG-C6. As expected, the longer distance of the
vortex convection introduces higher error. However, the error decreases consistently in both the short- and long-convection
cases when the vortex is reasonably resolved. The errors obtained by the LADG methods almost exactly match with the error
of the pure compact differencing scheme (without LADG) even if the vortex is not well resolved. The results indicate that the
LADG methods does not show any major detrimental effect on the smooth flow even if the vortex is not well resolved by the
compact differencing scheme on a given mesh. That is, the error introduced by the LADG methods on the smooth flow is al-
ways lower than the error from compact and filtering schemes.

3.1.1.2. On wavy meshes. Seven different levels of grid spacing, Dx0/Rc = Dy0/Rc = 1.5, 1.0, 0.8, 0.6, 0.4, 0.3 and 0.2 are employed
for the vortex advection on the wavy meshes. The curvilinear mesh is analytically generated by the following formula [14]:
xi;j ¼ xmin þ Dx0 ði� 1Þ þ Ax sin
nxpðj� 1ÞDy0

Ly


 �
; ð33Þ

yi;j ¼ ymin þ Dy0 ðj� 1Þ þ Ay sin
nypði� 1ÞDx0

Lx


 �
; ð34Þ
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c
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Computational grid with Dx/Rc = Dy/Rc = 0.4 and the initial flow field of the vortex. Vorticity xRc/U1, 20 equally spaced contours from �0.004 to
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where the parameters are set to xmin = ymin = �6, Lx = 24, Ly = 12, nx = 2, ny = 4. Ax and Ay vary with the Dx0/Rc and Dy0/Rc to
keep the same amplification of waviness: Ax = 0.4Rc/Dx0 and Ay = 1.6Rc/Dy0. Fig. 4 shows the computational grid (Dx0/
Rc = Dy0/Rc = 0.4) and the initial vorticity contours. Same as the Cartesian case, the computational time-step size is set to
DtU1/Rc = 0.002 and the results discussed are at the instants of tU1/Rc= 8 and 80.

Fig. 5 shows the comparison between the exact solution and the numerical simulations for the v-velocity v/U1 along a j-
constant line that passes through the vortex center. The results are obtained at the instant of tU1/Rc = 80 on the wavy mesh
with Dx0/Rc = Dy0/Rc = 0.3. The normalized L1-error norm in the v-velocity profile in terms of grid spacing is shown in Fig. 6.
Similarly to the Cartesian grid case, the LADG methods on the wavy mesh does not show major impact both the well-re-
solved and unresolved smooth flows. All the results are nearly identical and the error decreases consistently in both the
short- and long-convection cases.
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3.1.2. Stationary normal shock wave
The second test case is a Mach 2 stationary normal shock wave that corresponds to a pressure jump pr/pl = 4.5 on 2D iso-

tropic and wavy meshes, where the r and l subscripts denote the post- and pre-shock conditions. Performance of the general-
ized formulations of localized artificial diffusivity, l* and b*, to capture the shock wave is investigated through the problem.
j* and D* are turned off (j* = D* = 0) in this test case. The initial conditions satisfy the Rankine–Hugoniot solution. Three dif-
ferent levels of mesh size Dx = Dy = 0.02, 0.01 and 0.005 are employed for both the isotropic Cartesian and wavy meshes. The
computational domain for the isotropic Cartesian mesh extends �0.5 6 x 6 0.5. The wavy meshes are generated in the same
manner as the previous vortex advection case, but with xmin = �0.5, ymin = 0, Lx = 1, Ly = 0.5. Periodic boundary conditions are
applied along the boundaries in the j-direction. Since the normal shock wave is not aligned with the wavy mesh, this prob-
lem can also be used to assess the impact of the cross-derivative terms, which are neglected in Eqs. (17) and (18), on the
results.

Fig. 7 shows the converged pressure profiles across the stationary shock wave obtained by the LADG-C6 with the three
different levels of mesh size. The profiles on the 2D wavy mesh are along a j-constant centerline. The results of the LADG-C4
and LADG-E4 are almost identical to the LADG-C6 (not shown here). Maximum wiggles amplitude and numerical shock
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thickness in terms of grid spacing are shown in Figs. 8 and 9. The wiggles amplitude is normalized by the pressure jump
across the shock wave Dp = pr � pl and the numerical shock thickness is defined by [12]
d
Dx
¼ Dp

Dxop
ox

��
max

: ð35Þ
The stationary shock wave is captured well without significant wiggles by smearing the shock discontinuity. The shock
maintains perfectly 1D shock structure on the Cartesian meshes and almost 1D on the wavy meshes. Maximum v-velocity
component in the computational domain is 0 on the Cartesian meshes and 1.2%, 1.0% and 0.66% of the Mach 2 freestream u-
velocity on the wavy meshes with the mesh sizes Dx = Dy = 0.02, 0.01 and 0.005, respectively. As the mesh size is refined, the
shock discontinuity is sharpened in the physical space and the result converges to the exact solution. All the generalized for-
mulations maintain the wiggles amplitude below 0.5% both on the isotropic and wavy meshes. The numerical shock thick-
ness is relatively insensitive to the grid resolution. The shock is captured approximately over the same number of grid points
even when the grid resolution is changed. Similar characteristics are also obtained by the 1D formulation of artificial non-
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linear diffusivity scheme for a 1D isotropic mesh [12]. The shock simulated on the wavy mesh is slightly more smeared than
that on the Cartesian mesh. However, 97% of the pressure jump across the shock wave is captured over six grid points in both
the meshes. Since most of the error is introduced by smearing the shock wave over the fixed number of grid points, the L1-
error in the region of shock wave decreases as first-order with increasing the grid resolution. The degradation of accuracy of
the numerical scheme to the first-order near shock wave is the best we can achieve and same as other shock-capturing
schemes.

3.1.3. Stationary contact discontinuity
The third test case is a strong temperature discontinuity at a stationary contact surface that corresponds to a temperature

jump Tr/Tl = 10 on 2D isotropic and wavy meshes. Performance of j* in Eq. (19) to capture the contact discontinuity on iso-
tropic and wavy meshes is investigated through the problem. l*, b* and D* are turned off (l* = b* = D* = 0) in this test case.
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Initial left- and right-side conditions for an inviscid fluid are: ql = 1.0 for x 6 0 and qr = 0.1 for x > 0 with u = 0.0 and p = 1.0.
The same 2D isotropic and wavy meshes with three different levels of resolution as in Section 3.1.2 are used. Periodic bound-
ary conditions are applied along the boundaries in the j-direction.

Figs. 10 and 11 show maximum wiggles amplitude and numerical contact surface thickness in terms of grid spacing. All
results reach almost a steady state and j* essentially turns off once the interface is smeared over a numerically resolvable
scale. That is, a contact discontinuity with nearly fixed thickness is obtained (the discontinuity spreads less than 0.1% of the
numerical contact surface thickness over thousands time-steps). The wiggles amplitude is normalized by the temperature
jump across the shock wave DT = Tr � Tl and the non-dimensionalized numerical contact thickness is defined by
Fig. 10.
dashed
d
Dx
¼ DT

DxoT
ox

��
max

: ð36Þ
Basically, the results are qualitatively similar to the stationary shock wave case. The temperature discontinuity is captured
by smearing the contact discontinuity over the approximately fixed number of grid points. That is, the numerical accuracy in
the L1-error near contact discontinuity is first-order. All the LADG methods maintain the wiggles amplitude below 0.5% both
on the isotropic and wavy meshes. The contact discontinuity simulated on the wavy mesh is slightly more smeared than that
on the Cartesian mesh.

3.1.4. Stationary material interface
The last test case for the performance evaluation of the localized artificial diffusivity scheme is a mass fraction disconti-

nuity at the stationary material interface on 2D isotropic and wavy meshes. Performance of D�k in Eq. (20) to capture the
material interface on isotropic and wavy meshes is investigated. l*, b* and j* are turned off (l* = b* = j* = 0) in this test case.
Initial left- and right-side conditions for an inviscid fluid are: Yl = 0.0 for x 6 0 and Yr = 1.0 for x > 0 with q = 1.0, u = 0.0 and
p = 1.0. Periodic boundary conditions are applied along the boundaries in the j-direction.

Because the proposed D�k model is different from the original model, we first investigate the effect of user-specified con-
stants CD and CY for the proposed D�k in order to set a proper value of the constants. The LADG-C6 method with the isotropic
Cartesian mesh (Dx = Dy = 0.02) is used for this discussion. The first term in the model for D�k is the main artificial diffusivity
term and the second term is only activated in the region where the mass fraction exceeds the bound of 0 6 Y 6 1. The second
term acts to restore the mass fraction within the admissible bounds. The effect of the CD is investigated first without the sec-
ond term by setting CY = 0. In Fig. 12, maximum wiggles amplitude is plotted on the left axis with solid line with circle and
numerical material interface thickness is plotted on the right axis with dashed line with triangle in terms of CD ranging be-
tween 0 and 0.05. Non-dimensionalized numerical material interface thickness is defined by
d
Dx
¼ DY

DxoY
ox

��
max

;where DYr � Yl: ð37Þ
There is a clear trade-off between the wiggles amplitude and material interface thickness. That is, as CD increases, the mate-
rial discontinuity is smeared and the amplitude of the spurious oscillations decreases. For CD = 0.01, 97% of the mass fraction
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jump across the interface is captured over six grid points that is comparable to the capability of the shock and contact dis-
continuity capturing and the maximum wiggles amplitude is approximately 1.1%.

With fixed CD = 0.01, Fig. 13 shows maximum bounds (0 6 Y 6 1) exceeded and numerical material interface thickness in
terms of CY. Logarithm scale is used in the left axis. As expected, the second term in D�k is effective in keeping mass fractions
between 0 and 1 almost without affecting the interface thickness. With the set of CD = 0.01 and CY = 100, the mass fraction
almost keeps the bounds of 0 6 Y 6 1 and also the interface is captured without introducing excessive dissipation. The fixed
constants of CD = 0.01 and CY = 100 are used for all the test cases discussed in the rest of the paper.

Figs. 14 and 15 show maximum wiggles amplitude and numerical material interface thickness in terms of grid spacing.
The same 2D isotropic Cartesian and wavy meshes in Section 3.1.2 are used for this discussion. All results reach almost a
steady state with nearly constant material interface thickness (the interface spreads less than 0.05% of its thickness over
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thousands time-steps). The results are qualitatively similar to the stationary shock wave and contact discontinuity cases. The
model smears the material interface over the fixed number of grid points without significant wiggles on both the isotropic
Cartesian and wavy meshes.

Analysis of the results for smooth and non-smooth flows indicates that the proposed localized artificial diffusivity scheme
successfully captures the discontinuities with minimal effects by smearing the discontinuities on both the isotropic Carte-
sian and wavy meshes and does not show major impact on both the well-resolved and unresolved smooth flows. The ampli-
tude of wiggles near the discontinuity and the number of grid points to capture the discontinuity do not depend on the mesh
size. The simplification of the method in which all the cross-derivative terms are neglected does not show any major detri-
mental effect on both smooth and non-smooth flows.
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3.2. One-dimensional Sod and Lax shock tube problems

The 1D shock tube problems introduced by Sod [17] and Lax [18] are used to investigate the capability of the localized
artificial diffusivity scheme on 1D moving shock and contact discontinuities. Initial left- and right-side conditions for Sod
shock tube problem are: ql = 1.0, ul = 0.0 and pl = 1.0 for x 6 0, and qr = 0.125, ur = 0.0 and pr = 0.1 for x > 0. The conditions
for Lax shock tube problem are: ql = 0.445, ul = 0.698 and pl = 3.528 for x 6 0, and qr = 0.5, ur = 0.0 and pr = 0.571 for x > 0.
Firstly, simulations are performed on a uniformly spaced grid with 201 grid points in the region of �0.5 6 x 6 0.5
(Dx = 0.005). Then, the results obtained by a 2D anisotropic mesh with an aspect ratio of 5 (Dy = 5Dx) are discussed. The
anisotropic Cartesian mesh consists of 201 and 13 grid points in the x- and y-direction where Dx = 0.005 and Dy = 0.025.
The test cases of an anisotropic mesh is used to confirm the consistency between the original 1D formulation and the gen-
eralized model on a multi-dimensional formulation. Periodic boundary conditions are applied on the boundaries in the
y-direction.

3.2.1. On an isotropic mesh
Fig. 16 shows the comparison between the exact solution, the original localized artificial diffusivity method LAD-C6, and

the generalized methods LADG-C6, LADG-C4 and LADG-E4 for the density, the artificial viscosity and thermal conductivity at
the time of t = 0.2 for Sod problem and t = 0.13 for Lax problem on an isotropic mesh. The artificial viscosity and thermal
conductivity are normalized by the maximum obtained by LAD-C6. The shock and contact discontinuities are captured well
without significant spurious oscillations and show good agreement with the exact solution. The artificial viscosity and dif-
fusivity are automatically localized near the shock and contact discontinuities. Ninety-seven percentages of the density
jumps across the shock and contact discontinuities are captured over five and six grid points in both the cases, respectively.
Although slight wiggles appear near the discontinuities, maximum wiggles amplitudes in the density normalized by the den-
sity jump are 2.0% for Sod problem and 1.3% for Lax problem. The LAD-C6, LADG-C6, LADG-C4 and LADG-E4 show almost
identical results as expected. The artificial viscosities and conductivities obtained by the LAD-C6, LADG-C6 and LADG-C4
are also nearly identical. The LADG-E4 shows slightly lower artificial viscosity and conductivity than the other schemes
but the spatial extent is similar. Overall, there is no significant difference in the performance of the schemes.

3.2.2. On an anisotropic mesh
Fig. 17 shows the comparison between the exact solution and the numerical simulations at the time t = 0.2 for Sod prob-

lem and t = 0.13 for Lax problem on an anisotropic mesh. The artificial viscosity and thermal conductivity are normalized by
using the same maximum values obtained by LAD-C6 in the first test case 3.2.1. The LAD-C6, which uses geometrically aver-
aged grid spacing for the D scaling, introduces excessive artificial dissipation at the discontinuity. The excessive viscosity and
conductivity causes overly smeared shock and contact discontinuities and expansion waves. Also, in the Sod problem, proper
post-shock and -contact conditions are not recovered. These are due to the undesirable effects from the geometrically aver-
aged grid spacing. On the other hand, the multi-dimensional formulations work well to consistently maintain the original
properties of the 1D formulation. The results of LADG-C6, LADG-C4 and LADG-E4 match with the results obtained in the first
test case on the 1D isotropic mesh.
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Fig. 16. Numerical simulations of the 1D Sod and Lax shock tube problems on an isotropic mesh with Dx = 0.005. Density, normalized artificial viscosity and
thermal conductivity are presented at t = 0.2 for Sod problem and t = 0.13 for Lax problem. Thin solid line, exact; thick solid line, LAD-C6; dashed line, LADG-
C6; dashed-dot line, LADG-C4; dotted line, LADG-E4.
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3.3. One-dimensional Shu–Osher problem

The 1D shock–entropy wave interaction introduced by Shu and Osher [6] is investigated to assess the capability of the
generalized formulation of localized artificial diffusivity scheme on shock–turbulence interaction. Because the entropy
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Fig. 17. Numerical simulations of the 1D Sod and Lax shock tube problems on a 2D mesh with a mesh aspect ratio of 5 (5Dx = Dy, Dx = 0.005). Density,
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waves are sensitive to the numerical dissipation, schemes using an upwinding to capture discontinuities usually introduce
excessive numerical dissipation and the entropy waves are damped. Initial left- and right-side conditions are: ql = 3.857143,
ul = 2.629369 and pl = 10.33333 for x < �4, and qr = 1 + 0.2sin(5x), ur = 0.0 and pr = 1.0 for x P �4. Simulations are performed
on a uniformly spaced grid with 201 grid points where the computational domain is �5 6 x 6 5 with Dx = 0.05.
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Fig. 18 shows the comparison between the reference solution and the numerical simulations for the density at the time of
t = 1.8. The reference solution is obtained on 1601 grid points with ninth-order weighted compact non-linear scheme
(WCNS) [19]. Numerical simulations of the original and all the generalized formulations capture the shock wave and also
simultaneously resolve the entropy waves well. The LAD-C6, LADG-C6, LADG-C4 and LADG-E4 show almost identical density
distributions and reasonable agreement with the reference solution.

3.4. Comparison of numerical schemes on 1D shock-related problems

It is useful to understand the advantages and disadvantages of the proposed LADG method by comparing with other high-
order shock-capturing schemes. One-dimensional Sod and Lax shock tube and Shu–Osher shock–entropy wave interaction
problems are used to compare the LADG scheme, seventh- and ninth-order weighted ENO (WENO) scheme [20] and WCNS
[19,21]. A Roe-type characteristic-wise finite difference WENO is used for the flux evaluation in the WENO. Monotonicity
preserving limiters are not used. Seventh- and ninth-order WENO use 9 and 11 points in the stencil to evaluate a first spatial
derivative at a node and require higher computational cost than the compact scheme with LADG method. In the WCNS, char-
acteristic variables are used for the interpolation scheme and the flux at the cell interface is evaluated by Roe’s flux difference
splitting. Seventh- and ninth-order WCNS require higher computational cost than the WENO and use 17 and 21 points in the
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stencil to evaluate a first derivative. The seventh- and ninth-order WENO and WCNS are denoted WENO7, WENO9, WCNS7
and WCNS9. The WENO and WCNS data discussed here are provided by Dr. E. Johnsen and Dr. T. Nonomura. The numerical
setup for the simulations is the same as in Sections 3.2.1 and 3.3.

Comparison between the numerical methods for the density of 1D Sod and Lax problems at the time of t = 0.2 for Sod
problem and t = 0.13 for Lax problem is shown in Fig. 19. Close-up views near the shock and contact discontinuity regions
are presented. Table 1 summarizes the comparison of the numerical discontinuity thickness and maximum wiggles at the
post- and pre-shock and contact discontinuity regions. The result of a ninth-order monotonicity preserving WENO (MPWE-
NO) [20] is also included in Lax shock tube problem. The wiggles amplitude is normalized by the density jump across the
shock and contact discontinuities, and the numerical shock and contact thicknesses are defined by
Fig. 19.
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Basically, the LADG-C6 method shows slightly more smeared shock and contact discontinuities compared with the high-or-
der WENO and WCNS except at the contact discontinuity for Lax problem where similar contact thickness is obtained by
both the LADG-C6 and ninth-order WENO/WCNS. The maximum differences of the discontinuity thickness in Eq. (38) be-
tween the LADG-C6 and WENO/WCNS are 0.68 and 0.57 grid points at the shock and contact discontinuity regions, respec-
tively, compared with the WCNS9 and WENO9. Although the wiggles amplitude obtained by the LADG-C6 is basically larger
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Comparison between the numerical methods for 1D Sod and Lax shock tube problems with Dx = 0.005. Close-up views of density in the shock and
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.



Table 1
Comparison between the numerical methods for the normalized numerical discontinuity thickness and maximum wiggles amplitude at post- and pre-shock
and contact discontinuity regions on 1D Sod and Lax shock tube problems

Method Thickness Maximum wiggles amplitude (%)

Shock Contact Pre-shock Post-shock Pre-contact Post-contact

(a) Sod shock tube problem
LADG-C6 2.94 3.68 1.30 1.57 4.75 2.07
WENO7 2.35 3.55 1.62 � 10�2 4.98 � 10�2 0.27 0.46
WENO9 2.29 3.09 0.44 0.21 4.13 1.27
WCNS7 2.35 3.55 5.18 � 10�3 0.13 0.28 0.19
WCNS9 2.26 3.30 1.54 � 10�2 1.62 0.54 0.28

(b) Lax shock tube problem
LADG-C6 2.80 3.29 1.42 � 10�2 0.82 0.69 1.30
WENO7 2.28 3.53 1.79 � 10�3 6.09 � 10�2 0.83 3.09 � 10�3

WENO9 2.20 3.41 8.20 � 10�4 0.20 4.01 2.48 � 10�3

WCNS7 2.29 3.61 8.22 � 10�3 3.06 � 10�2 0.00 5.12 � 10�3

WCNS9 2.24 3.30 1.44 � 10�2 0.12 0.13 6.89 � 10�3

MPWENO9 2.21 3.42 3.45 � 10�14 0.11 0.68 1.25 � 10�2
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than the WENO and WCNS, the level of wiggles is relatively small except at the pre-contact discontinuity region in Sod prob-
lem. The more than 4% under-shoot at the pre-contact region in Sod problem is observed for the LADG-C6 and WENO9. The
under-shoot is caused by the initial start-up error generated by the initial discontinuity [22]. The WCNS9 at the post-shock
region in Sod problem introduces similar level of wiggles amplitude compared with the LADG-C6. The WENO9 introduces a
large over-shoot (4%) at the pre-contact region in Lax problem. The over-shoot can be reduced to the similar level of the
LADG-C6 using monotonicity preserving limiters as shown in MPWENO9.

Fig. 20 shows the comparison between the numerical methods for 1D shock–entropy wave interaction problem at the
time of t = 1.8. Close-up view of density in the post-shock region is presented. The LADG method shows superior perfor-
mance in resolving the entropy waves behind the shock compared to seventh- and ninth-order WENO/WCNS. This is due
to the high-resolution characteristics of the compact differencing scheme, which achieve better representation of the entro-
py wave while the shock is captured by locally adding artificial diffusivity that does not affect the smooth regions. WENO and
WCNS show the similar performance in resolving the entropy wave.

The compact differencing scheme with the artificial diffusivity scheme does not show significant detrimental effect on
capturing the moving discontinuities and shows superior performance in the shock–entropy wave interaction using less
stencils and computational cost compared with the high-order WENO and WCNS. The comparisons between the compact
scheme with LADG method and high-order WENO/WCNS illustrate the advantage of the LADG method for the simulation
of flows involving shocks, turbulence and their interactions if the small level of wiggles near discontinuity is accepted as
a practical compromise. The artificial diffusivity scheme smears the discontinuities over a fixed number of grid points to
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Fig. 20. Comparison between the numerical methods for 1D Shu–Osher problem with Dx = 0.05. Close-up views of density in the post-shock region is
presented at t = 1.8. Thin solid line, reference solution obtained on 1601 grid points with WCNS9 [19]; thick solid line with circle, LADG-C6; dotted line with
square, WENO7; dotted line with triangle up, WENO9; dashed-dot line with diamond, WCNS7; dashed-dot line with triangle down, WCNS9.
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a numerically resolvable scale. Basically, slightly more smeared shock and contact discontinuities are obtained by the arti-
ficial diffusivity scheme compared with the high-order WENO/WCNS, but the actual difference in the number of grid points
used to capture the discontinuities is less than one grid point.

3.5. Two-dimensional double Mach reflection

The first 2D shock test case on a uniformly spaced Cartesian mesh is the double Mach reflection problem initially used to
compare several numerical schemes by Woodward and Collela [23]. Since the shock waves and contact discontinuities are
not aligned with the grid, this problem can be used to assess the impact of the cross-derivative terms on the results using a
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Fig. 21. Numerical simulations of the double Mach reflection of a Mach 10 shock with Dx = Dy = 1/120. Density, 30 equally spaced contours from 1.731 to
20.92 at t = 0.2.
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Cartesian mesh. The original artificial diffusivity formulations [13] in Eqs. (11)–(14) include the cross-derivative term of o4 f
o2xo2y

,
whereas the generalized multi-dimensional formulations in Eqs. (17)–(20) do not have the cross term.

Initially, a Mach 10 shock wave is at a 60� angle with a reflecting wall and intersects the bottom boundary at x = 1/6 and
y = 0. The air ahead of the shock is stationary with a density of 1.4 and a pressure of 1. The conditions at the top boundary are
set to describe the exact motion of the Mach 10 shock. Therefore, the Mach 10 shock keeps the 60� angle and moves to the
right in the domain. The interaction with the wall creates a double Mach reflection of the shock at the wall. The conditions
from x = 0 to 1/6 at the bottom boundary are fixed as the conditions of the initial post-shock flow and reflecting wall con-
ditions are used from x = 1/6. The values at the left boundary are fixed to the initial post-shock values, and zero-gradient
conditions are employed at the right boundary. Simulations are carried out on a uniformly spaced Cartesian grid with three
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different levels of grid spacing 241 � 121, 481 � 241 and 961 � 481 grid points in the x- and y-directions where the com-
putational domain extends from x = 0 to 4 and y = 0 to 2 with Dx = Dy = 1/60, 1/120 and 1/240.

Density contours with 30 equally spaced contours from 1.731 to 20.92 in the region x 2 [0,3] and y 2 [0,1] at the time
t = 0.2 are plotted in Fig. 21. The results are obtained by the LAD-C6 and LADG methods using the grid spacing of
Dx = Dy = 1/120. All the results are nearly identical. The results of the LADG scheme that ignore the cross-derivative term
do not show any significant detrimental effect on the discontinuity capturing. Two-dimensional shock interactions and con-
tact discontinuities including the near-wall jet are well captured at the proper locations in the simulations, which are sen-
sitive to the numerics and difficult to capture. Fig. 22 shows the density contours of double Mach reflection with three
different levels of grid spacing Dx = Dy = 1/60, 1/120 and 1/240 using the LADG-C6 method. Consistent with the mesh refine-
ment study of the stationary normal shock wave and contact discontinuity in Sections 3.1.2 and 3.1.3, the discontinuities are
captured approximately by the fixed number of grid points. Thus, the discontinuities are sharpened by refining the mesh.
Roll-up of the near-wall jet is better resolved with increasing the mesh resolution. High-resolution characteristics of the
present sixth-order compact differencing scheme can achieve better representation of the wall jet compared with the same
grid resolution using a fifth-order WENO scheme [24] and have qualitatively similar jet compared with twice the grid res-
olution using a fifth-order WENO [25] while shock and contact discontinuities are captured by adding the localized artificial
diffusivity to suppress high-wavenumber wiggles. Note that the fifth-order WENO uses seven points in the stencil to eval-
uate a spatial derivative and requires higher computational cost than the compact scheme with the artificial diffusivity. Also,
qualitatively similar result is obtained by a ninth-order MPWENO [20] that requires 11 points in the stencil. The result ob-
tained by a ninth-order WENO (without monotonicity preserving limiters) [25] shows similar near-wall jet structure but
vortex structures appearing from the contact discontinuity that emerges from the triple-point are better captured than that
of LADG method. This is probably due to the fact that the artificial diffusivity scheme smears the discontinuity over a numer-
ically resolvable scale, whereas the WENO captures the discontinuity that is slightly thinner than that obtained by the LADG
method as discussed in Section 3.4.

On this 2D simulation, the LADG-E4 reduces the cost for calculating the localized artificial diffusivity by a factor of 2.79
compared with the LAD-C6. This leads to a reduction of approximately 27% in the total computational cost.

3.6. Two-dimensional oblique shock reflection

The second 2D shock test case is an oblique shock reflection on an inviscid wall. The shock angle is 33� with the Mach 3
freestream. Isotropic and anisotropic Cartesian meshes are used to test the generalized model on a multi-dimensional for-
mulation. This problem can be used to assess the capability of the generalized method on isotropic and anisotropic Cartesian
meshes.
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Fig. 23. Numerical simulations of the Mach 3 oblique shock reflection on an isotropic mesh (Dx = Dy = 0.01). Pressure, 20 equally spaced contours from 1.2
to 7.5.



1

2

3

4

5

6

7

8

0.4 0.6 0.8 1 1.2 1.4

p/
p

x
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The computational domain extends from x = �1.5 to 2.0 and y = 0 to 1.5 where the isotropic mesh consists of 351 � 151
grid points in the x- and y-directions (Dx = Dy = 0.01) and the mesh aspect ratio of the anisotropic mesh is 5 (Dx = 0.05,
Dy = 0.01). The shock jump conditions across one grid point and slip-wall conditions are imposed on the upper and lower
boundaries, respectively. Inflow conditions are fixed to the freestream and outflow conditions are extrapolated.

3.6.1. On an isotropic mesh
Pressure contours in the region x 2 [0,1.5] and y 2 [0,0.5] obtained by the LAD-C6 and LADG-C6 on an isotropic mesh are

plotted in Fig. 23. The results of the LADG-C4 and LADG-E4 are nearly identical to the LADG-C6 (not shown here). Pressure
profiles along y = 0.18 line for the LAD-C6 and LADG schemes are shown in Fig. 24. All the simulations allow for converged
solutions without significant wiggles even though the shock wave is not aligned with the mesh. Almost identical results are
obtained by the LAD and LADG methods. Although the shock wave is slightly smeared compared with Roe’s third-order up-
wind scheme, the proper post-shock conditions are well-recovered.

3.6.2. On an anisotropic mesh
Pressure contours and pressure profiles along y = 0.18 line obtained by the LAD-C6 and LADG schemes on the anisotropic

mesh (Dx = 5Dy) are plotted in Figs. 25 and 26. The pressure contours of LADG-C4 and LADG-E4 are not presented here be-
cause all the LADG methods show almost identical results. Although all the simulations achieve converged solutions, the
shock reflection is not properly simulated by the original formulation (LAD-C6) and the reflected shock wave is considerably
smeared because of the undesirable mesh dependency of the artificial diffusivity. On the other hand, the LADG methods work
well to capture the shock wave at the location similar to that of the Roe scheme. Consistent with the isotropic test case 3.6.1,
the shock is slightly smeared compared with the Roe scheme but the proper post-shock conditions are well recovered.

3.7. Two-dimensional supersonic blunt body flow

The third 2D test case is a blunt body in a Mach 3 inviscid flow [24]. The simulations are carried out on a curvilinear aniso-
tropic mesh where the grid is aligned with the body and the grid spacing perpendicular to the front bow shock is smaller
than that in the other direction. This test case allows us to investigate the capability of the multi-dimensional curvilinear
and anisotropic mesh formulations of the localized artificial diffusivity scheme. The effect of the cross-derivative terms
can also be assessed for a generalized coordinate system.

An impulsive start of freestream Mach number 3 is imposed on the simulations. Therefore, the Mach 3 front bow shock
gradually develops from the blunt body toward the left. Reflecting wall conditions are imposed on the blunt body, and the
inflow boundary conditions are fixed to freestream conditions. Fourth-order extrapolation is employed at the outflow
boundaries. A curvilinear and anisotropic mesh of 81 � 61 is analytically generated by using [24]:
x ¼ �ðRx � ðRx � 1ÞgÞ cosðhð2n� 1ÞÞ; ð39Þ
y ¼ ðRy � ðRy � 1ÞgÞ sinðhð2n� 1ÞÞ; ð40Þ
where the parameters are set to Rx = 3, Ry = 6, and h = 5p/12.
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Fig. 27 displays pressure contours (a)–(d), artificial viscosity distributions (e) and (f), and the computational grid (g). Pres-
sure profiles along the centerline y = 0 are plotted in Fig. 28. Only the LAD-C6 could not achieve a converged solution. There-
fore the result of LAD-C6 shows the snapshot after a long period at the computational time t = 20. The LAD-C6 shows
relatively high and non-smooth distribution of artificial viscosity near the bow shock region compared with the LADG-C6.
This is due to the undesirable effects from the geometrically averaged grid spacing. For LAD-C6, the artif